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A bstract

There exist examples of systems in which small, simple metallic

cations are associated with ring-like molecules (e.g., aromatic

radical anions), with aggregates of molecules which encage the ion

(e.g., solvation and coordination), or special molecules which trap

ions within the molecular structure (crypts). For each of these

examples, the harmonic oscillations of the ion in the presence of the

molecular structure can be observed. Moreover, in many instances,

the stability of the ionic motions in the presence of the molecular

structure is important in considering some form of transport process

which is associated with the ion. In this paper we present an analysis

of the mechanics of the motion of an ion under the influence of

various molecular structures. For our analyses, we use a form of

symmetry-adapted Taylor series which we recently developed. We

determine the positions of equilibrium for the ion in the presence

of a continuous ring, a polygon and a polyhedron of sources for the

pair-wise forces. We also determine the states of stability for the

positions of equilibrium through an examination of the second order

terms in the Taylor series. We show that the general form for the

Taylor series for a continuous ring is of the same form as that for

a discrete polygon. We also show that small numbers of terms in the

Taylor series can duplicate the exact potential for an atom within

a tetrahedron or octahedron of sources to a high degree of accuracy.
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1. Introduction

There are many examples of systems which involve the associa-

tion of an ion or atom with a ring-like molecule, with a cage-like

molecule, or with an aggregate of molecules. Cation/radical anion

pairs, in which the radical anion is an aromatic ring, constitute

a class of examples which has been well studied.1 In the last

decade or so, considerable interest has grown around certain molecules,

referred to generically as crypts, which are capable of binding

small ions within a fairly rigid molecular cage. 2Finally, the

well known states of solvation or coordination of ions in solution

also serve as examples. 3For all of these systems of aggregation,

it is of considerable importance to be able- to specify the states

of vibration and the conditions for mechanical stability for an ion

or atom with respect to the larger ring, crypt, or cage of solvent

or ligand. A number of transport and kinetic processes depend upon

these vibrational states in order to account for part of their

activation.

In this paper, therefore, we examine the vibrations and

mechanical stabilities of an ion or atom which is associated with a

ring, crypt, or cage of solvent. In order to carry out this

examination of the vibrations and mechanical stahilities, we use

a form of symmetry-adapted Taylor series which we recently

developed. 46An important facet of the analysis to follow b)uilds

upon the fact that polygonal rings and polyhedral cages are closely

related from a mechanical point of view.
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In the next section we summarize the formulae which are needed

to carry out the subsequent analyses. Following that summary, we

present the results of our examinations of the ring and cage systems.

We examine the use of a variety of potential energy functions from

the electrostatic Coulombic potential to the Buckingham exp-6

and related potentials.

We have already shown that the form of analysis summarized

in the next section is very useful for the elaboration of the nature

of forces which operate in solvated ionic systems. 4,7-10 These

methods, we believe, also can be useful for many other applications

as well.

2. The Symmetry-adapted Taylor Series

Elsewhere we have shown that for a general class of functions

which consist of separable and purely angular and radial parts of the

form

--() = Y (R)F(R), (2.1)

in which Y A(R) is the spherical harmonic function, the Taylor

series is

3/2 r L+n^(n-+r) =(41) r (-i) AYM ( r )

n=O L , M, n LM( Z

S 21)+1) (LUO0 A0)(LUMmXp)Il (R). (2.2)

n 1,
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The vector r is a displacement from an end-point of R. In eq (2.2)

the quantity Ant is given by1 1

A =0 for k > n and n oddnZ

- (2+l)n!(n-++l)!! for k < n and Z - n even (2.3)

The quantity (LtMm1Xu) is a Clebsch-Gordan coefficient 1 2 and I nL (R)

is defined by

InL(R) = 1fdk kn+ 2 f(k)jL(kR) (2.4)

in which jL(kR) is the spherical Bessel function of the first kind.
1 2

The function f(k) defines the radial Fourier transform of

F(R): :5

f(k) = 4 iJ dR R 2F(R)jX(kR). (2.5)
0

The Taylor series for a scalar function,

Go(R) = Yoo(R)[/TFF(R)I

= F(R), (2.6)

assumes a particularly simple form:

(;o(r+R) = /4; I (rn/n!) (-i) t+nA (R) (2.7)
n=O

in which P (x) is the Legendre polynomial1 2 of order z and R-r is



-5-

the scalar product of the unit vectors R and r.

We have also shown 5 that the Tavlor series (2.2) for a

scalar ftunct ion can he expressed as

(:(R+r) = 1 (rnn ) A r A , (-r) Y(+q)

V P ) . ._

dL (d/dR)n-q-(]Z)

+ dR

This simple form retains the angular dependencies of eq (2.2)

and displays differentiations with respect only to the radial

quantities.

We now list several explicit expansions of potential energy

functions which we will use in the next section.

The expansion for the Coulomb potentio' is identical to the

familiar Laplace expansion
13

S ((Rr). (2. 9R+Y r 1 1. 9+- I- tt - ) z.9

For the Morse potential,

N (R) = Dexp[a (RO-R)]{exp[a (Ro-R)] - 21 (2.10)

where 1) is the dissociation energy and a is a parameter, we have

found 6

tN(R+r) = Y j (-r)n TA P,(R.r)1 2n e
2aR[2aRk9 _l(2aR)

- (n-9,)k (2aP)]- 2 o' R, [aRk 1 (cxR) - (n-Z)k (aR)]} (2.11)

9.i
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in which the functions k n(x) are the modified spherical Bessel

functions of the third kind:
1 3

kn (x) = (-x)n(x-l d/dx)n e__ (2.12)n x

For an arbitrary inverse power of R, R we have also found

1 _ 1 (R-r) k+s)!(q+n-s-2)'

JR+rj q  (q-2)!R q  n, Zs n(2.1)-s(2s)! (2-r/R

14

This expression is equivalent to one derived by Briels who used

functional expansions.

The Buckingham exp-6 potential

R= A e C/R 6  (2.14)

is simply a combination of an expansion for the exponential and eq

(2.13). The result is

r))-IA-P)(R.r) ABn [^+ (BR)-(n-)k (BR)]¢B(R n,k i7r~ nZP k[B r _1 (R-n-~

1 1 $ (Z+s)!(n+4-s)
-T --n+6 I -T 2 . (2.1S)

R = (-s)!(2s)!!1

It is a straightforward matter to add the Coulomb potential

to any of the various forms in order to generate potential functions

for ions which interact with a variety of molecular aggregates.

Crystal field calculations with the use of the Coulomb potential

eq (2.9) of course are well known. 1 5 An essential feature of the

cyrstal field calculations is the exploitation of cubic point
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g1roup sy'immietries to sort out variotis terms in the expansions. The

svmiiie try -adaptcd Tavor series we have developed works s imi liarl '.

The examples we investigate in the next sect ion illustrate this.

3. Applications to Rings and Cages

We begin this section with an investigation of the system which

consists of a continuous ring of matter. We develop a Taylor series

for the potential energy function for such a system. Next, we

examine a polygon of sources in a plane (an example of which would be

the ben-ene ring). We show that the results obtained for the poly-

gon bear a strikingly close similarity to those obtained for the ring.

Finallv, we examine systems of sources which are distributed at the

vertices of a tetrahedron and an octahedron. We develop these analyses

respectively from considerations of distributions of sources in

trijangles and squares. Additional sources are placed at appropriate

positions on the axes which pass through the centres of these

figures. The conditions for mechanical stability within these

systems still hear some similarity to the conditions for stabilitv

which we derive for the ring and polygon.

a._Ri.n&gs of source density

The classical problem of the determination of the form of

the potential due to a ring of charge density is well known. 1 3

Similar treatments for other possible source matter densities seem

not to have been given. We have considered this problem

for the Yukawa (or Debye-IMiickel) potential 6 and we examine it
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further in this section.

We consider the general problem of the potential due to an

incremental source dQ distributed continuously as a ring of matter

(neutral or charged):

dQ = Q do. (3.1)

The magnitude of R is a constant. Thus,

dQ P0 (R.r) =dR Tlm)! P OR)Pmi r) e x p Im)cR
0 m

- Cr)

Q P (cosOR)Pk(cosOr). (3.2)

The general form of the potential now is

Go(R+r) = /4T-TQ I (rn/n!)Y(-i) +n A nQ(coso-R)PQtc°Ser)TnZ(R).
n=O zQcs)~c6) R

(3.3)

The condition for equilibrium is simply

P1(cosoR) I I I (R) = 0. (3.4)

From this equation we identify two conditions for equilibrium:

(1)

PL(cosOR) = , R 2 (3.5)

The position of the point of equilibrium is at the origin of r, viz.,
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the centre of the ring.

The second condition for equilibrium is

(2)

111 (R) = 0. (3.6)

This condition may in fact be satisfied by more than one value of

R. Usually, as we shall see, only one value of R is significant;

the second value may correspond, for example, to the (not useful)

case of infinite separation.

It is worth noting at this point that from eq (2.8)

Iii(R) = RF = 0( . )

e

as one would expect.

Stability is determined, for an arbitrary form of displace-

ment, by evaluating the second order coefticient in the Taylor

series. The second order term from (3.3) is written as

t2 (R-r) = Qr 1 . 20(R) + 4P2(cse)P2(COSO )122(R)1 (38

For the first point of equilibrium, (1) above, eOR  = /2, P2(cosOR 
e e

-1/2, and Re =a, the radius of the ring, and

-( 1 =I (r2( (Re) + P2(coS0r)I2a(R)3 " (3.9)

For an axial displacement at the centre of the ring, P2(cOSOr)

- +1. Thus,
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t (axial) r9 - 2 [

2 - -T- (12 e(Re) + 12 2(Re)J (3.10)

The sign of 120 + 122 is all-important. If the sign is negative,

the motion is stable.

For a transverse displacement about a position of equilibrium

at the centre of the ring, P2(cosOr) = - 1/2, and

t Q  ( Io(Re) '22(R (3.11)

The second position of equilibrium lies on the axis which

passes through the centre of the ring. At this second point, R=R e

where Re is the solution to I11 (Re) = 0. We find,

cose = 1 [R2-a211/ 2  (3.12)R R ee e

with the Legendre polynomial evaluated as

P2 (cos ) = 1 - 3a2/2R2  (3.13)R ee

Thus,

t(2)  Q r 2 1 1 20(Re) + 2(1-3a2/2R2)P2(cOSer)I22(R).(3.14)

For an axial displacement, P2(cos0 r ) = +1, and

t(2,axial) = /; Q r 2 I20(R) + (2/3-a 2/R 2 )12 2 (R)j. (3.15)
T (_ e e



l.or a transverse motion, 112(cosO.) = - 1/2, and

t(2,trans) =4- Q r 2f l~ ~ -la 2 /2 2)I R
2 = 2 0 - (Re (1-3a /2R e 22(R (3.16)

It is difficult to make further progress at this point without

considering specific functional forms. From the expansions of the

various functions given in the last section, we are able to consider

several cases.

We examine now the ring of source for the Morse potential.

'he equilibrium condition 11 1 (R e) = 0 specifically yields

- 2cDexplot(Ro-Re)](exp[a(Ro-Re)]-lJ = 0. (3.17)

We see that Re = R0 or Re = satisfy this equation. The latter

value is not useful.

The quantity R0 in the Morse potential is a separation which

is characteristic of the Morse interaction which operates between

two individual, spherical masses. It is definitely the caSe that

when the mass is distributed on a ring, positions and conditions of

equilibria and stability need not conform to the conditions which

apply to the simpler spherical, diatomic case. In this respect,

with the use of the Morse (and other) potentials in extended distribu-

tions, we see arising conditions of interpretation which are necessary

for composite potential functions such as the Stockmayer potential. 16

The Stockmayer potential is the sum of a Lennard-Jones component and

a dipolar interaction. The Lennard-Jones component, operating alone,

has a meaningful minimum value which is associated with

a point of equilibrium for a diatomic system. When
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combined with dipolar contributions, as is the case with the

Stockmayer potential, the minimum of the composite function need

not fall at the same place as the minimum for the Lennard-Jones

component alone. Yet, typically an interpretation is given 17 which

says simply that the Lennard-Jones type of minimum in a Stockmayer

potential gives the location of the minimum if the dipolar

component were to vanish. We see similar interpretations applying

to th( use of diatomic potentials for extended distributions of

mass and charge.

The second order term for the expansion of the Morse potential

is simply

rM 2 ID exp[ct(RO-R)] 2 exp[a(RO-R)](l-l//R)¢M2 =  -

- 1 + 2/aR + P2(cosOr) P2 (cosOR) (4 exp[c(Ro-R)](l+i/2aR)

- 2(1+1/aR)]I . (3.18)

The individual contributions 120 and 122 are displayed separately

as

,(Morse) 2 a2D exp[a(RO-R)]{2 expta(RO-R)](l-l/tR)
20 1

1 + 2/aR) (3.19)

and
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(Morse) - 2 C 2 1) ex )V(Ro-R) ] {2 explj (Ro-R) j (1+l/2xR)

- 1 -I/aRJ. (3.20)

Now we return to eq (3.10) and note that R=a. We have

I(Morse) + l(Morse) _ 6 al) exp[(Ro-a)]I - exp[a(Ro-a)]

20 22 / a 1j

(3.21)

Thus,

(1,axial) r 2  
2 a ) e t(Ro-a) e (Ro-a)) (3. 22)

Ihis quantity is greater than zero only as long as R0 < a. For

R0 > a, motion at the centre of the ring is not stable. The mass

cannot remain at the centre of the ring in this situation. It must

move to a position of equilibrium elsewhere in the system.

For the transverse motion at the centre of the ring, we find

(1,trans) r 2  
2 ,(Ro-a) (X(RO-a) 1 l

(,tr n = r2 2a2 l) ee (l-1/2aa) - - "__

(3. 23)

This expression depends upon two dimensionless parameters which may

be chosen from aRo, aa, and a/Ro.

At the second position of equilibrium along the axis of the

ring, we find for eq (3.15)

.. .. . . . . . . .. .. A d
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M2axial) = r2 2aaD(l a2/R ) (3.24)

and for eq (3.16)

(2,trans) = r 2  a2

M2 - 2a 2D _ (3.25)

Each of these motions is stable. Indeed, for a2/R = 2/3, the

resultant harmonic potential is spherical. This particular point

lies at an altitude h = 0.71a above the plane of the ring.

For the Buckingham exp-6 potential, the situation is more

complicated. Because the potential, as we have listed it, does not

depend on a diatomic equilibrium separation R0 , it is not as simple

here to identify the condition for instability at the centre of the

ring or elsewhere.

The radial equilibrium condition I1 1 (Re) = 0 is found to be

A-eBR (3.20)
ABe e - 6C/R 7 = 0.

e

The general second order term is

rB2 : 2 lAB2( -2/ BR)e-BR _ 30C/R' + 2P2(cosOR)P2(cosO r)

x(AB2 (1-1/BR)e "BR 48C/Re)] (3.27)

Again, for the consideration of equilibrium at thecentre of

the ring, R=a. For the axial displacement,
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B(1,axial)r- r2 1 AB-aB 8 C( )
B2 -2 1-T -a- 1 . (3.28)

Here we find that if

B e aB> 18C/a 7,

the axial disnlacement at the centre of the ring will be unstable.

For the transverse displacement , we find

(1,trans) = r2 11 AB13SBe -
B2 72 .A "a)e S4C/aj. (3.29)

1:or the second position of equilibrium, outside the ring,

hut alI on1 tile axis, we find

2! r2  2( -BRe[ - + )P2 (cosOR 1
: 2 =  A B e 0 ( I - 7 / B R e ) + 2"-1 1 O ) 2 C S )P( C

(3. 3o)

where %,c have used eq. (3.26) to eliminate (/R , terms. For an
V

axial displacement, we find

I'*~f 2 ARC212 'a x i -3 a (Ir9/B-e )R 2 (3.31)
C

For tile transverse displacement, we find

(2,trans) _ r AB20-RR .' (1+9/131 ) 2/ R . (3.32); ~ ~~~~ RB 2 ds e- /R) 2B e (.

0

In these cases, it is necessary to test numerica lIly or equilibrium

with the use of speci fic values of the quantities A, B, and C.
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If the Coulomb potential is added for a charged system, it

is necessary to add terms of the form

r<

C(R+r ) = qjP (3.33)£(COSR)Pcosa r>i+l

in which r<(>) is the lesser (greater) of R and r. The addition of

terms to the potential clearly makes the task of finding stabilities

more difficult. However, the formalism does allow one to proceed

directly to answer such questions as those pertaining to stability.

b. Polygonal distributions of discrete sources

We write the general expansion of an arbitrary scalar function

for a collection of sources as

n +nn£

GO(R+r) V4W I (rn/n!)I(-i) A P(RI*r)I (RI) (334)
n=0 X n2

where the summation over I is considered over sources. For a regular

polygon, all RI are the same, R. The angular distributions with

respect to the centre of gravity of the distribution, of course, differ.

Consider, therefore, the sum over unit vectors RI:

I P,(R.r) : 2 Y (r) Y(R I)

I (m)(-' Pm(cos0r)Pm(cos0R)e-im~r leim RI (3.35)
m "r I

For a regular polygonOR, = 21rn/N, where N is the total number of

discrete sources, and n = 0,1,2,...,N-1. Thus,
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N-I
Y exp(i2Tnf/N) = N6m, O* .

n=O

Hence,

cO

G0( = / N Y (rn/n!)Y(-i)'+nA nYPk (c os 0 R ) p Z(c os~ r ) In k(R ) (3.37)
n=O k.

where L'elChI OR is the same for a plane of sources.

Eq (3.37), apart from the number of discrete sources N, is

exactly the same as (3.3). Hence, all conditions of stability fournd

for the continuous ring apply equally to the regular polygonal

distribution of sources.

c. Cages of sources: regular polyhedra

We now consider regular polyhedral cages of sources. These

cages are constructed easily by distributing sources at the vertices

of tetrahedrons, octahedrons, etc. The tetrahedron, for example, can

be realized in terms of a base triangle with a fourth source located

at an appropriate position on the axis which passes through the

centre of' the triangle. An octahedron is realized similarly. The

plane of sources defines a square. Two additional sources are placed

axially.

In order to investigate the stabilities of these systems, we

make use of the expressions for t2 for polygons together with as .many

additional terms for the axially located sources as needed. In the

following, we consider the tetrahedron and octahedron as the most

typically encountered examples. More complicated systems easily are

generated.
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Considering first the tetrahedron, we construct a base triangle

of sources. In order to examine the mechanical stability of a test

particle located at the origin of the tetrahedron, we consider a point

above the plane. Thus,

t( 2 ) = 44i I(-Io(R) + 2(1-3a 2 /2R 2 )P2(cOS'r)I22 (R) (3.38)2T(a) I 0

We locate the fourth source on the z-axis at a distance R from the

centre of the tetrahedral origin. Thus,

t2T(b) = r 2 [ '-I20 (R) + P2(cosO )122(R) (3.39)

The sum of these two terms gives

t 411 r 2[_ 4I 2 o(R) + 2(4-9a2/2R2)P2(cOS0r)122(R)3. (3.40)t2T = 3T T - osI20

if, for example, we consider the locations of the sources on the

triangle to be (0,2V2R/3,-R/3) and (±27/3R,-/ R/3,-R/3), then it is

easy to see that a 2/R2 = 8/9. Hence,

t2T = ¢T4 ( - I20(R)) . (3.41)

For the octahedron, on the other hand, the base plane of (4)

sources contains the centrum of the system. Thus, we consider the

expression

t0(a) - 20 (R) - P2(coser)I22(R) (3.42)
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for displacements about the centre. A second term for the additional

two axial sources is

t2 ( t- - 1)(R) + PI(cOS r)1 2 2 (R)]. (3.43)

The sum is

t20 = /4f f [-212.(R)). (3.44)

In both the cases of the tetrahedron and octahedron, the second

order Legendre polynomial disappears as is required by arguments

of symmetry.

It is useful now to investigate these results with the use of

specific functional forms. The use of the Morse potential yields

physically transparent and interesting conditions for stability.

For the Morse potential, for example, we can write

r2M(TJ = 8 2D exp[t(Ro-R)] 2 exp[ca(Ro-R))(1-1/aR) - I

+ 2/QLR} (3.45)

If R = R0, the force constant for an encaged particle is

8
kT 8 2), (3.46)

a result which we have found elsewhere. 1 Similarly, the force constant

for the displacement of a test particle about the centre of an

octahedron of sources is
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k0  = 4U21). (3.47)

In both of these cases, it is clear that the motions are mechanically

stable.

It is possible to consider the general question of the stability

of displacements about the centre of gravity and symmetry in these

structures. From eq (3.19) we note that when

2 exp [c (Ro-R) (- 1/aR) - I + 2/aR < 0, (3.48)

a displacement is mechanically unstable. The condition (3.48)--for

the Morse potential--reduces easily to the following inequality:

R > R + I -k n 2 .
( 3 . 4 9 )

When this inequality is satisfied, instability is guaranteed.

Such conditions of instability may be observed in actual systems.

Weaver (personal communication) has observed that the attempted

reduction of lithium 2.1.1 cryptate to form the encrypted atom is

electrochemically irreversible. The gross difference in size of the

atom as compared to the cation suggests the system may be unable

to accomodate the atomic species. If the encrypted species is

mechanically unstable in that location, then some form of tunnelling

out of the crypt would be expected rapidly to occur.

I L
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d. A truncated Taylor series versus the exact potential: a comparison

We conclude this section by comparing a truncated Taylor

series for the Morse potential against the potential itself. We

consider again the tetrahedral cage of sources, each of which is

described by the Morse potential.

The choice for the origin of the Taylor series is the point of

equilibrium at the centre of the tetrahedron. The four vectors R i

(1<i<4) from the centres of force to that point have the same length R.

Thus, only the angular factors differ in the four individual Taylor

series. The superposition of the Taylor series requires the considera-

t ion of

11q(Ri ( . O
i=l

in the manner previously discussed [cf., the last subsection]. This

resultant angular factor can be evaluated for arbitrary directions of

r. This angular factor (3.50) vanishes for 2 = I because we have

chosen the point of equilibrium to be the origin. It also vanishes

for . = 2 because the system has no quadrupole symmetry. We were

surprised to discover that it also vanishes for k = 5, although

it does not vanish for any other value of 2 up to 12.

In order to demonstrate the non-spherical nature of the

resultant potential, we have chosen three particular directions for

r. One of these is toward a vertex of the tetrahedron, i.e., directly

toward one of the centres of force. Another is toward the midpoint

of a face of the tetrahedron, i.e., directly away from one of the



centrcs of force. One can anticipate that these should be respect itvclv

the directions of the most rapid and least rapid increase of potential.

The third direction was chosen toward the midpoint of an edge of the

tetrahedron, and should represent any intermediate rate of increase

of the potential. The exact expression for the resultant potential

can also be readily evaluated along these directions.

In Figure 2 we show the result of an evaluation for the

particular choice of parameters aR = 4 and aR o. We note tile

following particular features which are revealed in the figure. (1)

The potential is spherical and harmonic at the centru . (2) The

aspherical and anharmonic contribution is well described by n=3, *=5

out to about r=0.IR (one third of the way to the face). (3) The

resultant potential is extremely well described by terms up to n=('.

Similar results are obtained for an octahedron of' centr, s of

force. in this case, however, the resultant potential exhibits an

even more spherical character. The exact potential is effectively

duplicated with the use of terms n=2,4,6. For the tetrahedron, in

contrast, n=2,3,4,5,6; i.e., five terms are needed to give a good

fit. In both cases the actual potential functions are well represented

by a small number of terms.

4. Summary and conclusions

We have used a symmetry-adapted form of the Taylor series in ordcr

to investigate the nature of the stabilities predicted for several

mechanical systems. In particular, we have examined rings, polyigons,

and polyhedra all of which share similar mathematical properties.
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The examination of the system of a continuous circular distribu-

tion of matter which interacts with a point mass showod two fundamental

positions of equilibrium: one is at the centre of the ring and the other

is on the axis. We established the conditions for the points of

equilibrium to be stable. Next, we showed that a regular polygon is

mathematically similar to the continuous ring. The conditions for

equilibrium and stability are the same for both systems. Finally,

we showed that questions of stability could be answered for regular

polyhedra by making use of the results for the polygons. It is

possible to show, for the cases of the tetrahedron and octahedron, that

under certain conditions even an enclosed point of equilibrium at the

centre of a regular solid can exhibit a mechanical instability with

respect to displacements about that point.

We believe these results to bc generally useful for a number of

applications. The point of view which we adopt in carrying out our

analyses is that one mass be examined with reference to the static

collection of surrounding masses (sources of force). For a number

of systems, it is sufficient merely to focus attention on a single

particle, such as a solvated ion. When this limited view is too

restrictive, it is quite simple successively to look at each mass

in a collection of interacting masses and develop a succession of

Taylor series. rhus, in this manner the realistic harmonic vibrational

force field can be developed for a system such as a molecule. The

subsequent development is a picture which is familiar as vibrational

spectroscopy. For scalar potentials, the use of our form of the

Taylor series enables one quickly to calculate harmonic and higher

order contributions.

The analyses of mechanical stability for polygons and polyhedra
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are important in the consideration of several transport processes.

[he surface of a metal or semiconductor, for example, at which

electrochemical oxidation or reduction can take place can be viewed

accurately as an extended surface network of interconnected polygons.

Thus, the question of the stability of a particle which interacts

with several polygons is important in the determination of the process

of surface migration. Simple systems, such as these extended polygons

as surfaces in vacua, can be rendered more complex by considering

additional distributions of molecules about the surface. The question

of the stability of a single particle enmeshed in such a complex is

still a resolvable question. The system can be modelled. Positions

of equilibrium can be established easily. And, finally, stability'

against displacement for a particle can be determined. All of this

can be done for a wide variety of model potential energy functions.

As an example, in a separate paper, we consider the relative stabilities

of solvated ions and atoms, and the implications these stabilities

have on the deposition of a metal atom at an electrode surface.
8
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Figure captions:

-Figure . The geometry for the determination of the equilibrium

condition near a ring of source for the Morse pot,:ntial.

FigLre 2. The potential energy as a function of displacement along

the radii in a tetrahedral cage of sources for the Morse potential.

As indicated in the inset, the radii arc directed toward a vertex

(V), toward a face (F), or toward an edge (F). The maximum displace-

ment considered is one-third of the distance to a vertex, i.e.,

the distance to a face. The dashed curte in each labelled pair is

produced by the Taylor series to order ri, while the solid curve

represents (within the width of the line) both the exact super-

potision of the Morse potentials and the Taylor series to order r " .
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